$$\begin{split} & \frac{10(16124)}{(16124)} \quad \begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \left(1 \right) \left(1$$

Pf Observe
$$Wh^{R}(E) = 0 \implies E = 0$$
.
Let $V \in W$ -mod be fixed. It has a Kedden Filherhen
Commy from the one on W . $(F_{:}V = F_{:}U \cdot V_{0}, V_{0} \in Entergraded of U)$.
The isom $N \times S \cong \mu^{-}(X)$ induces
 $C[N] \otimes T(W) \cong gr(U) \implies of graded algebrs (A)$
 $Thus H^{0}(R, gr(U) \otimes T(V)) = (C[N] \otimes gr(V)) = gr(V)$
 $= n - numents$
 $R + i(N, gr(U) \otimes T(V)) = 0$ $V :> 0$
 $W :> 0$
 $W := gr(R)$ free over $gr(W) \Longrightarrow T(V) = 0$ $V :> 0$
 $W := 0$
 $W := 0$
 $W^{n}(R, gr(U) \otimes T(V)) = 0$ $V := 0$
 $W := 0$
 $W := 0$
 $W^{n}(R, gr(U) \otimes T(V)) = V := V := 0$
 $W := 0$
 $W^{n}(R, g \otimes V) = V := V := 0$
 $W^{n}(R, g \otimes V) = V := V := 0$
 $W^{n}(R, g \otimes V) = V := 0$
 $W^{n}(R, g \otimes V) = V := 0$
 $W^{n}(R, g \otimes V) = V := 0$
 $W^{n}(R) := E' n Wh(G \otimes Wh(E)) := E' n Wh(E) \cong E.$
 $W^{n}(R) := E' n Wh(G \otimes Wh(E)) := E' n Wh(E) = 0$
 $W^{n}(R) := E' n Wh(G \otimes Wh(E)) := 0$
 $W^{n}(R) := 0$
 $W^{n}(R) := E' n Wh(G \otimes Wh(E)) := 0$
 $W^{n}(R) :=$

$$\Rightarrow$$
 $H^{o}(n, E') = Wh^{n}(E'') = 0 \Rightarrow E'' = 0$

D-mod interpretation:
DF An M-equivariant D-module on G(B, V), is n-Whittaker
with respect to zin -> C. F for any xen & veV,

$$(x_{D} - x_{M}).v = z(x).v$$

where $x_{D} = veets$ Fold energody to x adving on V
where $x_{D} = veets$ Fold energody to x adving on V
 $x_{M} = action obtained by differentiating the M-equivariant action.$

Ę

Not, the projection May - Od maps Zay -> W y'ednet.
Let Z₊ = Zay be augmentation ideal
Thus (BB localization + Skyrabin)
$$\{W/Z_+W - modules} \} \longrightarrow \{m \cdot Whittaker coherent D - modules} \}$$

on G/B (w.r.t. K: R - C)

S Whittaker Reduction
DeF Given a
$$(H_{n}, U_{n})$$
-bimod K , define Whittaker reduction functor
 $Wh_{n}^{n}(K) := (K/Kn_{n})^{n}$, where $n_{Z} = (x - x(x))_{x \in \mathbb{N}}$
S for $n \in \mathbb{N}$, $x \in K/Kn_{X}$, $n \cdot x := ad n(X) + x(n) \cdot x$
Let $K(K) := Wh_{n}^{n}(K)$.
We may write $H(K) = Hown_{N}(G, K\otimes G) \longrightarrow is (W_{N}W)$ -bimodule
Recall : $H(H_{n}) = W \simeq E_{N}$ for principal $e(non degen, K)$.

Two (Men then 4.1.4 or (GN) Let
$$c, c' \in Spec Zy \land H$$

 $H_c = M_3/(H_{3}, (s - con_{rezy} \& W_c:= W/W:(s - control reductors, where $Z_3 = SW$
(1) Then $K := SWh_m(K)$ where $a = f_{12}H_{12$$

Then, g=(H): (Sym(y) mod) ~ Zey - need

$$M \longrightarrow (O(T^{\infty}) \otimes M)^G$$

Sinc G reduction, suffices $O(T^{\infty})$ is Art spring-modifie. But
this holloops From the map $T^{\infty} \rightarrow g^{\infty}$ being smooth linetry
holdon 53], which conserved in point is Art. ~
Now, the general coordinates is proved in EG-1 54 to a spectral
sequence comment. Some comments:
• One obstade in using the keelder filteries on UL mode is
that is a priori intervaled from below so associated model
is intrife -dimensional. This explores why used with HC Unjobil
is intrife -dimensional. This explores why used with HC Unjobil
9 Generations a good filteritors to comple the
spectral sequences & good filteritors to comple the
preset obside that is done addit or mode to structure
 $M = K/K n_{\infty}$ Min Min and
 $K = K/K n_{\infty}$ Min Min and
 $M = M^{m}$
Applieding: Proof of Premet's conjector that relates Envite dimensional
Windelikes to primitive ideals I = May such that the associated
We will be primitive ideals I = May such that the associated
We will of I equals Ad G(e). (Losev give alternat
proof (song detormation).

N° is
$$W_{20}/W_{20}^+$$
 -module, $W_{20}^+ = W_{20} \cap W.W_{20}$,
which is 2 diagonalizable
N° irreductle => J. L⁰(N°) simple subjudent
• N° irreductle => J. L⁰(N°) simple subjudent
• Cat Ø is Artunian (all objects Fin. keight) because all weight spaces
• Cat Ø is Artunian (all objects Fin. keight) because all weight spaces
• Gre Fin. dim & there are Fin. help many simples.