Recall
$$
\frac{1}{2}
$$
 (eablan grading): $\frac{1}{2}$ haddre modlred (f*abur on of so that
\n $1 + \frac{1}{2}$ haddr 5 5 8, $\frac{1}{2}$ (760) (3), where 8 : 4 369⁺
\n $t \cdot 3 = \pm^{-2}$ Al 7 (760) (3), where 8 : $t \mapsto (t + \frac{1}{t})$ and 6 .
\nThus, values $\frac{1}{2}$ (by 1)(n) := 5 FeCl⁺ 1 $t \cdot 7 = \pm^{-1}$ 4 FeCl⁺ 3
\n $t \cdot 7$ (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $1 + \frac{1}{2}$ (d) 1 (e) 1 (f) 1 (g) 1 (h) 1 (i) 1 (ii) 1 (iii) 1 (iv) 1 (v) 1 (v) 1 (vi) 1 (v) 1 (v) 1 (vi) 1 (v) 1 (v) 1 (vi) 1 (v) 1 (v) 1 (vi) 1 (v) 1

S. Shryab:	(x-xin) $x \in n$
Let $(W_1, n_k) = mod$ scalars $\sum_{k=1}^{n} F_{k-1} g_k d_k U_{n-1} + col \leq w^2$	(x-xin) $x \in n$
Let $(W_1, n_k) = mod$ scalars $\sum_{k=1}^{n} F_{k-1} g_k d_k U_{n-1} + \sum_{k=1}^{n} F_{k-1} g_k$	

Pf Observe Wh ^E ^D ^E ^O Let ^V ^E ^W mad be fixed It has ^a Kazhdan filtration coming from the one on ^W ^F ^V ^F ^W No No finite generatingsetof ^V The isom Nx ^S M ^x induces ^N ^g ^W ^g ^Q isom of gradedalgebras ^A This ^H ^r ^g ^G 9apr v7 GCN7og V grev invariants ^H ⁿ ^g ⁹ 8,5cm ⁰ iso ^g ^Q free over grew ^g QQ ^v ^gQQ.mg ^v Then ^a spectral sequence argument yields ^H ⁿ QQ^V ^V ^H ⁿ QQ^v ⁰ iso m invariants ^a reman ^f QQwht ^E É The www.t II.f Let ^E Ker ^f Then Wh ^E ^E nwh Qo WhCE E's White ^O W E D f injective And QQWACE ^E ^E ⁰ induces LES Hocm.Q whieDFiiiim.E Him whee Hines Tf

$$
\Rightarrow H^{\circ}(h,E^{\prime}) = W^{\circ}(E^{\prime}) = 0 \Rightarrow E^{\prime} = 0
$$

D-model, after pretablea:
\n
$$
QF
$$
 An M-eyuvent D-modelle an GIB, 11, as a-lUhtheter
\n QF An M-eyuvent D-modelle an GIB, 11, as a-lUhtheter
\n QF An M-eyuvent D-modelle an GIB, 11, as a-lUhtheter
\n QF An M-eyuvent D-modelle an GIB, 11, as a-lUhtheter
\n QF An M-eyuvent the D-modelle an GIB, 11, as a-lUhtheter
\n QF An M-eyuvent the D-modelle an GIB, 11, as a-lUhtheter

Not, the projection
$$
M_y \rightarrow Q
$$
 maps $Z_y \leftarrow W$ if M .

\nLet $Z_+ \leftarrow Z_0$ be equivalent by $Z_0 \leftarrow W$.

\nThus $(BB \text{ localization} + Skyab:n)$

\nThus $(MB \text{ total} + Skyab:n)$

\nThus $(MB \text{ total} + Skyab:n)$

\nThus $(BB \text{ localization} + Skyab:n)$

\nThus $(BB \text{ localization} + Skyab:n)$

S (W) Haker Reduction
\n
$$
DE = Given \in (W_3, W_3) - b. mod K, define (W_1, H_2k-rduchon Function)
$$
\n
$$
W h n (K) := (K/K n_K) \times dhr = n_{K-2K+1} \times dfr
$$
\n
$$
W h n (K) := (K/K n_K) \times dhr = n_{K-2K+1} \times dfr
$$
\n
$$
B \quad F = n_{K-1} \times eK/K n_{K}, n_{K-1} \times eH
$$
\n
$$
L + K(K) := W h_{K}(K)
$$
\n
$$
L + K(K) := W h_{K}(K)
$$
\n
$$
W g (K) = H g g (K) \times g (K) \times g (K) g (K) - h m s dK
$$
\n
$$
Rg (K) \times g (K) = g g (K - g m m_{K}) e (m_{K} \log_{10} K).
$$

Prof ^K is ^a modalfunctor Agtermed ^W ^b mad

Pf Gannon Ginzburg We must show for any Uagdimods MM that KIM ^k 1M ^k Mgm Follows fromtaking By Skreakin QQ ^K ^M MQ ^Q ^D ^Q ^Q N Thus ^k ^M ^k ^M MQgQ ^k ^M Skreation ME QQ KIM M8 ^M Skreaban N Q Then apply ^N Invariants use that QQ g are both identity functors Rink This awesome proofholds for HC ^bmodules in muchgreatergenerality exactfunctorbutfarthis Next we show ^K is an Chandratimodules we'll need to restrict to Harish

Def ^A finitely generated UgUg ^bmad ^K for which theadjoint of action ada visav va is locally finite is called ^a H ^h chandab.de

Def ^M coherent ^D module has good filtration ^F define

characterstcvar.ie chfM Supp grFM KaHCUg bimad Ch ^K ^Δ gr Ug May Glytoacy filteredalgebras sit ^g ^B grB and Def Given ^a pair B.is of non neg Harish Chandra are fingen then say ^a CB Br famed ^K is ^w bimodal if its characteristic variety ch ^K SpecgrB Specgrit is contained in the diagonal ^Δ Spec ^g ^B Specgrit then let ^mvent be dominantregularweights ^K ^a weak HC Un Un finedThe centralreduct BBlocalization ¹ ^K is ^a HC UnUn ^bmod Dgef1.1ofKashiwara Kaw ²the associated ^D mad LocCK on GB GB has re singulates ³ There exists ^a good filtration on Loc ^K whose associated graded is reduced Let IT ^T GB ay Springerreso iiEiiiiiiii ^D mod Lock on ⁵ ⁵ has ^a good filtration whose mii.iiiiiiiiii aa.a.de mad thenrequires 2k algebra ^U ^e ^B0216,2 so that Loc ^K EU ^e ^B 046,2 ^g Lock Cohl⁵ ⁵ is reduced that to admit ^a goodfiltration so that ^g See ⁶ for further discussions

Thus (Man thm 41.44 5 [6-1)	Leb - C 2 (e) 5 kec 2 3	Hec 2 (e) 2 (f) 2 (g) 2 (h) 2 (i) 2 (j) 2 (k) 2 (l) 2
-------------------------------	-------------------------------	---

Then,
$$
g - (k) : (S_{y-1}C_{y}) \mod \mathfrak{F} \longrightarrow Z_{y-1} \mod R
$$

\nThen, $g - (k) : (S_{y-1}C_{y}) \mod \mathfrak{F} \longrightarrow Z_{y-1} \mod R$

\nThen, $g - (k) : (S_{y-1}C_{y}) \mod \mathfrak{F} \longrightarrow Z_{y-1} \mod R$.

\nThus, \mathbb{R} has 9072 in \mathbb{R} being small frequency, and \mathbb{R} is the same number of \mathbb{R} .

\nNow, the general exectors is proved in 10^{-1} sth by a special form of $S_{y-1}C_{y-1}$ and $S_{y-1}C_{y-1}$.

\nNow, the general exectors is proved in 10^{-1} sth by a special form of $S_{y-1}C_{y-1}$.

\nThus, the general result is \mathbb{R} is the same number of $S_{y-1}C_{y-1}$ and $S_{y-1}C_{y-1}$.

\nThus, the general result is \mathbb{R} is the same number of $S_{y-1}C_{y-1}$ and $S_{y-1}C_{y-1}$.

\nThus, \mathbb{R} is the same number of $S_{y-1}C_{y-1}$ and $S_{y-1}C_{y-1}$.

\nThus, \mathbb{R} is the same number of $S_{y-1}C_{y-1}$ and $S_{y-1}C_{y-1}$.

\nThus, \mathbb{R} is the same number of $S_{y-1}C_{y-1}$.

\nThus, \mathbb{R} is the same number of $S_{y-1}C_{y-1}$.

\nThus, \mathbb{R} is the same number of $S_{y-1}C_{y-1}$.

\nThus, \mathbb{R} is the same number of $S_{y-1}C_{y-1}$.

\nThus, \mathbb{R} is the same number of $S_{y-1}C_{y-1}$.

\nThus, $\mathbb{$

Exercise 1.10 km, we have
$$
2^{3}
$$
 sec, we have 2^{10} (d) = $\{F^{n1}F^{n} \text{ qm } H^{n2} \text{ s}$ (e) 2^{3} sec, we have 8^{3} (e) 3^{-3} sec, we have 8^{3} (f) 3^{-3} sec, we have 8^{3} (g) 3^{-3} sec, we have 8^{3} (h) 2^{3} (i) 2^{3} (j) 2^{3} (k) 2^{3} (l) 2

$$
N^{\circ}
$$
 is W_{30}/W_{30}^{+} -module, $W_{30}^{+} = W_{30} \cap W \cdot W_{30}$
\n W_{30}/W_{30}^{+} = $W_{30} \cap W \cdot W_{30}$
\n W_{30}/W_{30}^{+}
\n W_{30}/W_{30}^{+}

Let
$$
au = \frac{10}{100}
$$
 ke $u\theta$ -eigapers, $l = a_0$, $l = \frac{10}{100}$ me $m = \frac{10}{100}$
\n $l = \frac{10}{100}$ $m = \frac{10}{100}$ $m = \frac{10}{100}$
\nLet $au = \frac{10}{100}$ $m = \frac{10}{100}$ $m = \frac{10}{100}$
\n $l = \frac{10}{100}$ $l = \frac{10}{100}$ $l = \frac{10}{100}$
\n $l = \frac{10}{100}$ $l = \frac{10}{100}$ $l = \frac{10}{100}$ $l = \frac{10}{100}$
\n $l = \frac{10}{100}$
\n $l = \frac{10}{100}$
\n $l = \frac{10}{100}$
\n $l = \frac{10}{100}$ $l = \frac{10}{100}$ $l = \frac{10}{100}$ $l = \frac{10}{100}$
\n $l = \frac{10}{100}$ $l = \frac{10}{100}$ $l = \frac{10}{100}$ $l = \frac{10}{100}$
\n $l = \frac{10}{100}$ $l = \frac{10}{100}$ $l = \frac{10}{100$

The naive expectation about having Borel Weil Bott theory is completely false